LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of Functional Hyperbranched Poly(phenyltriazolylcarboxylate)s by Metal-Free Phenylpropiolate-Azide Polycycloaddition.

Photo by trnavskauni from unsplash

The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the… Click to show full abstract

The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the synthesis of hyperbranched polymers. In this work, metal-free polycycloadditions of tris(3-phenylpropiolate)s (1) and tetraphenylethene-containing diazides (2) are performed in dimethylformamide at 100 °C for 7 and 12 h, producing hyperbranched poly(phenyltriazolylcarboxylate)s (hb-PPTCs) with high molecular weights and satisfactory regioregularities in good yields. The hb-PPTCs have good solubility in common organic solvents and high thermal stability. They are non-emissive in solutions, but emit intensively upon aggregation, showing an aggregation-induced emission effect. Their aggregates can work as fluorescent sensors for explosive detection with high sensitivity. Furthermore, the polymers can be utilized for the fabrication of 2D fluorescent patterns with high resolution by UV irradiation through copper grid masks.

Keywords: functional hyperbranched; hyperbranched poly; poly phenyltriazolylcarboxylate; construction functional; metal free

Journal Title: Macromolecular rapid communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.