LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crosslinkable-Chitosan-Enabled Moisture-Resistant Multilayer Gas Barrier Thin Film.

Photo from wikipedia

Chitosan-based films exhibit good oxygen barrier that degrades when exposed to high humidity. In an effort to overcome this drawback, a multilayer nanocoating consisting of crosslinkable chitosan (CHQ) and poly(acrylic… Click to show full abstract

Chitosan-based films exhibit good oxygen barrier that degrades when exposed to high humidity. In an effort to overcome this drawback, a multilayer nanocoating consisting of crosslinkable chitosan (CHQ) and poly(acrylic acid) [PAA] is deposited on polyethylene terephthalate (PET) using layer-by-layer assembly. Chitosan is functionalized with glycidyl methacrylate to introduce acrylic functionalities within the film. The deposited films are crosslinked using a free radical initiator and this crosslinking is confirmed by FTIR and reduced film thickness. A 10-bilayer (BL) crosslinked CHQ/PAA film, which is only 165 nm thick, results in a 36× reduction of the oxygen transmission rate of PET at 90% relative humidity. To achieve these same results without crosslinking, a 15-BL unmodified chitosan (CH)/PAA film, which is almost 5× thicker, must be deposited on PET. This environmentally friendly, transparent nanocoating is promising for food packaging or protection of flexible electronics, especially in high-humidity environments.

Keywords: barrier; chitosan enabled; enabled moisture; film; crosslinkable chitosan; multilayer

Journal Title: Macromolecular rapid communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.