LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Brush Poly(2-ethyl-2-oxazine)s: Synthesis by CROP and RAFT, Thermoresponsiveness and Grafting onto Iron Oxide Nanoparticles.

Photo by eriic from unsplash

Brush polymers are highly functional polymeric materials combining the properties of different polymer classes and have found numerous applications, for example, in nanomedicine. Here, the synthesis of functional phosphonate-ester-bearing brush… Click to show full abstract

Brush polymers are highly functional polymeric materials combining the properties of different polymer classes and have found numerous applications, for example, in nanomedicine. Here, the synthesis of functional phosphonate-ester-bearing brush polymers based on poly(2-oxazine)s is reported through a combination of cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazine and reversible addition-fragmentation chain transfer (RAFT) polymerization. In this way, a small library of well-defined (Đ ≤ 1.17) poly(oligo(2-ethyl-2-oxazine) methacrylate) P(OEtOzMA)n brushes with tunable lower critical solution temperature (LCST) behavior and negligible cell toxicity is prepared. Upon deprotection, the phosphonic acid end-group of the P(OEtOzMA)n brush enables the successful grafting-onto iron oxide nanoparticles (IONPs). Colloidal stability of the particle suspension in combination with suitable magnetic resonance imaging (MRI) relaxivities demonstrates the potential of these particles for future applications as negative MRI contrast agents.

Keywords: iron oxide; oxide nanoparticles; grafting onto; ethyl oxazine; onto iron; brush

Journal Title: Macromolecular rapid communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.