LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wavelength-Selective Folding of Single Polymer Chains with Different Colors of Visible Light.

Photo from wikipedia

Photochemistry allows chemists to exert control over chemical reactions with spatiotemporal precision. Furthermore, light holds the potential to not only gate when and where but also which reaction takes place.… Click to show full abstract

Photochemistry allows chemists to exert control over chemical reactions with spatiotemporal precision. Furthermore, light holds the potential to not only gate when and where but also which reaction takes place. Herein, two photocycloaddition reactions-initiated by different colors of visible light-are utilized to control the intramolecular crosslinking of single polymer chains. Irradiation with blue light (λmax = 470 nm) triggers a [2 + 2] photocycloaddition inducing an initial intramolecular crosslinking reaction, whereas subsequent irradiation with violet light (λmax = 415 nm) induces a [4 + 4] photocycloaddition, fully compacting the dual photoreactive polymer into a single-chain nanoparticle. Importantly, both crosslinked states are accessible under ultra-mild conditions requiring nothing but two different colors of visible light. The reported strategy of wavelength-selective crosslinking degrees provides key potential to be translated into materials applications for the remote control of mechanical properties on the molecular level.

Keywords: colors visible; visible light; polymer chains; single polymer; different colors

Journal Title: Macromolecular rapid communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.