LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ionic Strength and Thermal Dual-Responsive Bilayer Hollow Spherical Hydrogel Actuator.

Photo from wikipedia

As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved,… Click to show full abstract

As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved, the realization of actuating behavior from 3D to 3D is still a significant challenge. Herein, an effective strategy to develop a novel bilayer hollow spherical hydrogel actuator is proposed. Through immersing a Ca2+ incorporated gelatin core into alginate solution, an ionic-strength-responsive alginate layer will be formed along the gelatin core via alginate-Ca2+ crosslinks, and then another thermo-responsive alginate-poly(2-(dimethylamino)ethyl methacrylate)(Alg-PDMAEMA) layer is introduced to achieve a bilayer hydrogel with ionic strength and temperature dual responsiveness. A hollow hydrogel capsule could be obtained if a spherical gelatin core is applied, and it could produce complex shape deformations from 3D to 3D upon the trigger of ionic strength and temperatures changes. The present work may offer new inspirations for the development of novel intelligent polymeric hydrogel actuators.

Keywords: hollow spherical; bilayer hollow; hydrogel; ionic strength

Journal Title: Macromolecular rapid communications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.