LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CO2 -Strengthened Double-Cross-Linked Polymer Gels from Frustrated Lewis Pair Networks.

Photo from wikipedia

Conventional thermosets consisting of polymer networks with robust and irreversible chemical linkages are incapable of reshaping or reprocessing once formed. In contrast, reversible non-covalent crosslinks can impart structurally flexible and… Click to show full abstract

Conventional thermosets consisting of polymer networks with robust and irreversible chemical linkages are incapable of reshaping or reprocessing once formed. In contrast, reversible non-covalent crosslinks can impart structurally flexible and reconfigurable feature to the networks, but at the expense of certain mechanical strength. The integration of fixed covalent bonds and noncovalent bonds into these materials can usually attain enhanced mechanical properties and meanwhile provide dynamic and adaptable functions, such as responsive and healing ability to external stimuli. Here a double-cross-linked frustrated Lewis pair network (FLPN) is developed through a specific three-component reaction among triarylborane, triarylphosphine, and CO2 , which is composed of permanent chemical crosslinks and dynamic CO2 gas-bridged connections. The amount of CO2 added can regulate the density of supramolecular node in such FLPN, so as to control the strength and toughness of the gel material. Moreover, the broken gel can be rapidly healed by CO2 stimulus through the reconstruction of dynamic covalent network. This study will inspire a new way to create gas-based smart materials by incorporating frustrated Lewis pair chemistry into traditional gel system.

Keywords: lewis pair; cross linked; double cross; frustrated lewis

Journal Title: Macromolecular rapid communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.