LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Solvent-Free and Water-Resistant Dipole-Dipole Interaction-Based Super Adhesive.

Photo from wikipedia

Water-resistant and high-strength adhesion on different surfaces has attracted considerable attention for decades. However, the adhesion performances of conventional adhesives suffer from deterioration in adhesion performances under water or wet… Click to show full abstract

Water-resistant and high-strength adhesion on different surfaces has attracted considerable attention for decades. However, the adhesion performances of conventional adhesives suffer from deterioration in adhesion performances under water or wet conditions. This work proposes a dipole-dipole interaction strategy for fabricating a solvent-free adhesive that is synthesized via simple one-step copolymerization of dipole monomer acrylonitrile (AN), crosslinker poly(ethylene glycol) diacrylate (PEGDA) with variable length, and a monomer-soluble initiator that initiates room-temperature polymerization. The dipole-dipole interactions from cyan groups in AN concurrently contribute to strong cohesion and adhesion strength in bonding to a wide range of substrates including aluminum, ceramic, glass fiber, epoxy resin, polyethylene terephthalate, wood, and fractured large segmental bone. The adhesion strengths are dependent upon the length of PEGDA, and the shorter PEGDA-crosslinked PAN adhesive demonstrates outstanding water-resistant adhesion spanning pH 2 to pH 10 for 30 days with adhesion strength ranging from 3.31 to 3.97 MPa due to strong dipole-dipole pairing shielding. This dipole-dipole interaction and co-dissolution strategy open a new avenue for creating high-strength water-resistant adhesives for promising applications in engineering and hard-tissue repair.

Keywords: water resistant; water; adhesion; dipole dipole; dipole interaction

Journal Title: Macromolecular rapid communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.