LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Michael Polyaddition Approach Towards Sulfur Enriched Nonaromatic Polymers with Fluorescence-Phosphorescence Dual Emission.

Photo by shelbymdesign from unsplash

Nonaromatic photoluminescent polymers have attracted great attention due to their intriguing photophysical properties and promising implications in optoelectronic and biological areas. The luminescence from these nonconventional luminophores can be well… Click to show full abstract

Nonaromatic photoluminescent polymers have attracted great attention due to their intriguing photophysical properties and promising implications in optoelectronic and biological areas. The luminescence from these nonconventional luminophores can be well rationalized by the clustering-triggered emission mechanism. Sulfur, although as an n-electron-rich element with big radius, is not been widely utilized in construction of nonconventional luminophores despite of its potential competitiveness in nonaromatic photoluminescent polymers. Herein, the "click" type Michael polyaddition is utilized to construct sulfur-bearing nonconventional luminophores, and two sulfur enriched nonaromatic poly(thioether sulfone)s (PES) are obtained, which demonstrate fluorescence-phosphorescence dual emission. More investigations concerning the monomer of bis(vinylsulfonyl)methane are further proceeded to support acquired results. Finally, the application of explosive detection by the prepared PES is also conducted.

Keywords: michael polyaddition; phosphorescence dual; enriched nonaromatic; sulfur enriched; fluorescence phosphorescence; emission

Journal Title: Macromolecular rapid communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.