Acid-degradable (or acid-cleavable) polymeric nanoassemblies have witnessed significant progress in anti-cancer drug delivery. However, conventional nanoassemblies designed with acid-cleavable linkages at a single location have several challenges, such as, sluggish… Click to show full abstract
Acid-degradable (or acid-cleavable) polymeric nanoassemblies have witnessed significant progress in anti-cancer drug delivery. However, conventional nanoassemblies designed with acid-cleavable linkages at a single location have several challenges, such as, sluggish degradation, undesired aggregation of degraded products, and difficulty in controlled and on-demand drug release. Herein, a strategy that enables the synthesis of acid-cleavable nanoassemblies labeled with acetaldehyde acetal groups in both hydrophobic cores and at core/corona interfaces, exhibiting synergistic response to acidic pH at dual locations and thus inducing rapid drug release is reported. The systematic analyses suggest that the acid-catalyzed degradation and disassembly are further enhanced by decreasing copolymer concentration (i.e., increasing proton/acetal mole ratio). Moreover, incorporation of acid-ionizable imidazole pendants in the hydrophobic cores improve the encapsulation of doxorubicin, the anticancer drug, through π-π interactions and enhance the acid-catalyzed hydrolysis of acetal linkages situated in the dual locations. Furthermore, the presence of the imidazole pendants induce the occurrence of core-crosslinking that compensates the kinetics of acetal hydrolysis and drug release. These results, combined with in vitro cell toxicity and cellular uptake, suggest the versatility of the dual location acid-degradation strategy in the design and development of effective intracellular drug delivery nanocarriers.
               
Click one of the above tabs to view related content.