Designing new dynamic matrices in combination with a highly diverse material formation approach as Pickering emulsionsprovides us with the tools to engineer innovative dynamic porous microstructures in a highly controllable… Click to show full abstract
Designing new dynamic matrices in combination with a highly diverse material formation approach as Pickering emulsionsprovides us with the tools to engineer innovative dynamic porous microstructures in a highly controllable fashion. Here we make use of nanogels (nGels), which exhibits dynamic covalent cross-linking capabilities, as surface stabilizing agents in view of their highly controllable physiochemical properties. The method provides successful formation of dynamic covalent cross-linked hydrogel microstructures based on ketone and amine functionalized nGels using Pickering emulsions was shown. In this system we incorporated a pH-triggerable responsive behavior. The physiochemical properties of the resulting microstructure can be further tailored by modifying the intramolecular interactions at the interface, making this systems interesting for a wide range of applications. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.