LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inorganic reinforced poly(ionic liquid) microcapsules: confined cooling-assisted phase separation self-assembly and enhanced electro-responsive property.

Photo from wikipedia

We report a simple preparation of inorganic reinforced poly(ionic liquid) (PIL) microcapsules by combining dispersion polymerization and confined cooling-assisted phase separation self-assembly. Silane coupling agent-modified PIL microbeads were first prepared… Click to show full abstract

We report a simple preparation of inorganic reinforced poly(ionic liquid) (PIL) microcapsules by combining dispersion polymerization and confined cooling-assisted phase separation self-assembly. Silane coupling agent-modified PIL microbeads were first prepared by dispersion polymerization. Then, the microbeads were dissolved in a mixed solvent composed of good solvent and non-solvent to form hollow SiOx microcapsules at a relatively high temperature. Finally, the solution was cooled to induce the nucleation and growth of dissolved PIL chains on the inner and outer surface of hollow SiOx microcapsules to form inorganic reinforced microcapsules with asymmetric PIL/SiOx /PIL sandwich-like shell. The morphology of microcapsules can be controlled by adjusting PIL concentration and cooling rate. The inorganic reinforced microcapsules show enhanced suspended stability and electro-responsive characteristic when used as the dispersed phase of smart suspensions. This article is protected by copyright. All rights reserved.

Keywords: poly ionic; phase; reinforced poly; ionic liquid; inorganic reinforced; pil

Journal Title: Macromolecular rapid communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.