LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasound-Mediated Release of Gaseous Signaling Molecules for Biomedical Applications.

Photo by kellysikkema from unsplash

Although nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have been considered as notorious gas pollutants for decades, they are considered as endogenous gaseous signaling molecules (GSMs),… Click to show full abstract

Although nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have been considered as notorious gas pollutants for decades, they are considered as endogenous gaseous signaling molecules (GSMs), which have been widely recognized for their important signaling functions and prominent medical applications in human physiology. To achieve local delivery of GSMs to optimize therapeutic efficacy and reduce systemic side effects, stimuli-responsive nanocarriers have been successfully developed. Among them, ultrasound is considered as an attractive theranostic modality that can be used to track drug carriers, trigger drug release, and improve drug deposition, etc. In this minireview, we summarize recent achievements in designing ultrasound-responsive nanocarriers for the controlled delivery of GSMs and their biomedical applications. This emerging research direction enables the controlled delivery of GSMs to deep tissues, and the combination of ultrasound imaging techniques offers many possibilities for the fabrication of new theranostic platforms. This article is protected by copyright. All rights reserved.

Keywords: ultrasound mediated; signaling molecules; delivery gsms; biomedical applications; release; gaseous signaling

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.