LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conjugated Polyelectrolyte/Bacteria Living Composites in Carbon Paper for Biocurrent Generation.

Photo by brandi1 from unsplash

Successful practical implementation of bioelectrochemical systems requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on… Click to show full abstract

Successful practical implementation of bioelectrochemical systems requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on electrodes via electrochemical methods. This approach creates a fixed biocomposite that takes advantage of the increased electrode's electroactive surface area (EASA). Here, we demonstrate that a biocomposite comprising the water-soluble conjugated polyelectrolyte CPE-K and electrogenic Shewanella oneidensis MR-1 can self-assemble with carbon paper electrodes, thereby increasing its biocurrent extraction by ∼ 6-fold over control biofilms. A ∼ 1.5-fold increment in biocurrent extraction was obtained for the biocomposite on carbon paper relative to the biocurrent extracted from gold-coated counterparts. Electrochemical characterization revealed that the biocomposite stabilized with the carbon paper more quickly than atop flat gold electrodes. Cross-sectional images show that the biocomposite infiltrates inhomogeneously into the porous carbon structure. Despite an incomplete penetration, the biocomposite can take advantage of the large EASA of the electrode via long-range electron transport. These results show that previous success on gold electrode platforms can be improved when using more commercially viable and easily manipulated electrode materials. This article is protected by copyright. All rights reserved.

Keywords: polyelectrolyte bacteria; paper; biocurrent; carbon paper; conjugated polyelectrolyte

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.