Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a… Click to show full abstract
Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a versatile non-equilibrium system of polymer brushes with spatiotemporally programmable properties and functions driven by chemical fuels. By combining a responsive polymer with an autonomous pH regulator, the polymer brushes self-regulate their swelling and deswelling process with tunable lifetimes. By using patterned copolymer brushes with pH-responsive fluorescence moiety, we create an autonomous fluorescence modulator that self-regulates its fluorescence in spatiotemporally programmable fashion driven by a chemical or an enzymatic reaction. Furthermore, we implement a self-regulated wettability switcher of polymer brushes both in air and in an aqueous solution. The methodology and results in this work provide a useful avenue into the exploration of non-equilibrium synthetic materials with programmable functions and would accelerate the transformative developments of non-equilibrium materials and systems in practical applications. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.