LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Block Copolymer Self-Assembly Guided Synthesis of Mesoporous Carbons with In-Plane Holey Pores for Efficient Oxygen Reduction Reaction.

Photo from wikipedia

In this paper, we report a simple approach, using interfacial self-assembly of block copolymers (BCPs) on self-sacrificial templates, for preparing mesoporous carbons with in-plane holey pores, including nitrogen atom-doped carbon… Click to show full abstract

In this paper, we report a simple approach, using interfacial self-assembly of block copolymers (BCPs) on self-sacrificial templates, for preparing mesoporous carbons with in-plane holey pores, including nitrogen atom-doped carbon nanosheets and nanoflowers (denoted as NHCSs and NHCFs). The approach employed sheet- or flower-like layered double hydroxide as the templates, P123 copolymer as the pore-directing agent, and m-phenylenediamine as the carbon source. The holey mesopores may shorten the mass transfer distance to the internal active sites of stacked nanosheets, while the three-dimensional (3D) packing mode of nanosheets can reduce pore blockage caused by their tight stacking. Profiting from these structural advantages, acting as electrocatalysts for oxygen reduction reaction (ORR), both NHCSs and NHCFs show excellent catalytic performance better than that of carbon nanosheets without holey pores. Particularly, NHCFs exhibit a high half-wave-potential (0.82V) and a limiting current density (5.4 mA cm-2 ), close to those of commercial Pt/C catalysts. This study provides valuable clues on building mesoporous materials with in-plane holey pores as well as on the effect of pore structure and stacking mode of 2D materials on their electrocatalytic ORR performance. This article is protected by copyright. All rights reserved.

Keywords: holey pores; self assembly; plane holey; holey; mesoporous carbons

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.