Bottlebrush polymers exhibiting unique properties have attracted considerable attention for applications in many research areas. Herein, we report the first simultaneous synthesis and self-assembly of bottlebrush block copolymers at room… Click to show full abstract
Bottlebrush polymers exhibiting unique properties have attracted considerable attention for applications in many research areas. Herein, we report the first simultaneous synthesis and self-assembly of bottlebrush block copolymers at room temperature via photoinitiated polymerization-induced self-assembly (photo-PISA) using multifunctional macromolecular chain transfer agents (macro-CTAs). Compare with linear block copolymers, the bottlebrush block copolymers could promote the formation of higher-order morphologies (e.g. vesicles) when targeting similar degrees of polymerization (DPs). Moreover, a higher polymerization rate was observed in the case of bottlebrush block copolymers. Gel permeation chromatography (GPC) analysis showed that good polymerization control was maintained when synthesizing bottlebrush block copolymers by photo-PISA. Finally, the obtained bottlebrush block copolymer vesicles were used as seeds for further chain extension and multicomponent nanoparticles with a sponge internal structure were formed. We expect this study will not only expand polymer architectures employed in PISA, but also provides a new strategy to synthesize polymer nanoparticles with unique structures. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.