LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitric oxide-releasing supramolecular cellulose nanocrystals/silsesquioxane foams.

Photo by ofisia from unsplash

Cellulose nanocrystals (CNC)-based foams are promising tissue engineering materials that may facilitate implant-tissue integration and allow localized and controlled drug delivery. Herein, hybrid CNC-based foams, which are ultralightweight (30 to… Click to show full abstract

Cellulose nanocrystals (CNC)-based foams are promising tissue engineering materials that may facilitate implant-tissue integration and allow localized and controlled drug delivery. Herein, hybrid CNC-based foams, which are ultralightweight (30 to 100 mg cm-3 ), highly porous (> 95%), ominiphilic and superabsorbent (1500 to 3000 wt% of water and/or toluene uptake) are obtained by the in-situ condensation of poly(ethylene glycol) ditriethoxysilyl (TES-PEG-TES) into a three-dimensional network, where silsesquioxane nanoparticles (SS-NP) are the cross-linking nodes, and CNC are entangled and forming ionic interactions, resulting in a supramolecular structure. In a new approach, using 3-mercaptopropyltrimethoxysilane, sulfhydryl groups are inserted on the SS-NP periphery and S-nitrosated to enable the functionalization of SS-NP with S-nitrosothiol groups, which are capable of releasing nitric oxide (NO), in a process triggered by the hydration of the foams and modulated by the supramolecular structure of the foams. CNC-SS-PEG foams exhibit elevated thermal and structural stability, compressive strength compatible with various soft human tissues, and NO release rates (1 - 18 pmol mg-1 min-1 ) within the range of the beneficial NO actions. Thus, the CNC-SS-PEG foams herein described represent a new platform of supramolecular hybrid materials for localized delivery of NO, with potential uses in tissue engineering and other biomedical applications. This article is protected by copyright. All rights reserved.

Keywords: supramolecular cellulose; nitric oxide; nanocrystals silsesquioxane; oxide releasing; cellulose nanocrystals; releasing supramolecular

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.