While the confinement assembly of block copolymers (BCPs) into functional microparticles has been extensively studied, little is known about the behavior of Janus nanoparticles (JNPs) in spherical confinement. Here, we… Click to show full abstract
While the confinement assembly of block copolymers (BCPs) into functional microparticles has been extensively studied, little is known about the behavior of Janus nanoparticles (JNPs) in spherical confinement. Here, we investigate the confinement self-assembly of JNPs in drying emulsion droplets and compare their behavior to their ABC triblock terpolymer precursor. Emulsions of both materials were prepared using Shirasu Porous Glass (SPG) membranes leading to narrow size distributions of the microparticles with average hydrodynamic radii in the range of Rh = 250 - 500 nm (depending on the pore radius, Rpore ). The internal structure of the microparticles was verified with transmission electron microscopy (TEM) on ultrathin cross-sections and compared to the corresponding bulk morphologies. While the confinement-assembly of terpolymers resulted in microparticles with ordered inner morphologies, order for JNPs diminished when the Janus balance (JB) deviated from parity. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.