Gecko foot consist of numerous micro/nano hierarchical hairs and exhibit a high adhesion onto various surfaces by the "van der Waals force". The gecko, despite its mighty adhesion, can travel… Click to show full abstract
Gecko foot consist of numerous micro/nano hierarchical hairs and exhibit a high adhesion onto various surfaces by the "van der Waals force". The gecko, despite its mighty adhesion, can travel efficiently with a rapid adhesion switching given that the end of hair in the gecko foot is slanted in one direction. Herein, we report a shape memory polymer (SMP)-based switchable dry adhesive (SSA), inspired by gecko foot, having tremendous surface adaptability and adhesion switching capability. The SSA shows not only high adhesion to the various surfaces (approximately 332.8 kPa) but also easy detachment (nearly 3.73 kPa) due to the characteristic of SMP, which can reversibly recover from a deformed shape to its initial shape. On the basis of the novel adhesion switching property, we suggest the SSA-applied advanced glass transfer system as a feasible application. This experiment confirms that an ultra-thin and light glass film is transferred easily and sustainably, and we believe that the SSA might be a breakthrough and a powerful alternative for not only conventional dry adhesive but also the next-level transfer systems. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.