The photochemical reaction is a very important type of chemical reactions. Visualizing and controlling photo-mediated reactions is a long-standing goal and challenge. In this regard, single-molecule electrical detection with label-free,… Click to show full abstract
The photochemical reaction is a very important type of chemical reactions. Visualizing and controlling photo-mediated reactions is a long-standing goal and challenge. In this regard, single-molecule electrical detection with label-free, real-time and in situ characteristics has unique advantages in monitoring the dynamic process of photoreactions at the single-molecule level. In this Review, we provide a valuable summary of the latest process of single-molecule photochemical reactions based on single-molecule electrical platforms. The single-molecule electrical detection platforms for monitoring photoreactions are displayed, including their fundamental principles, construction methods and practical applications. The single-molecule studies of two different types of light-mediated reactions are summarized as below: i) photo-induced reactions, including reversible cyclization, conformational isomerization and other photo-related reactions; ii) plasmon-mediated photoreactions, including reaction mechanisms and concrete examples, such as plasmon-induced photolysis of S-S/O-O bonds and tautomerization of porphycene. In addition, the prospects for future research directions and challenges in this field are also discussed. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.