LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Biodegradable Multifunctional Film as a Tissue Adhesive for Instant Hemostasis and Wound Closure.

Photo from wikipedia

Here, we report a multifunctional film (MFF) as an alternative tissue adhesive in the form of an interpenetrating network consisting of self-crosslinked aldehyde-functionalized chitosan (AC) and crosslinked poly(acrylic acid) (PAA)… Click to show full abstract

Here, we report a multifunctional film (MFF) as an alternative tissue adhesive in the form of an interpenetrating network consisting of self-crosslinked aldehyde-functionalized chitosan (AC) and crosslinked poly(acrylic acid) (PAA) further coordinated with Ag+ . The MFF combines enhanced toughness and stretchability, which is attributed to the synergistic effects of the double-network design. Covalent crosslinking maintains the overall integrity of the MFF matrix, while noncovalent crosslinking dissipates energy under deformation. Upon contact, the MFF quickly dries the tissue surface followed by instant physical crosslinking to the tissue. Subsequent covalent crosslinking between the aldehyde groups of the MFF and the primary amine groups on the surface of the tissue further stabilizes the adhesion. Meanwhile, Ag+ provides strong antibacterial properties to the MFF. Notably, in vivo studies demonstrate that the MFF allows facile and tough attachment to the wet and dynamic surface of rabbit liver and presents superior hemostasis and sealing properties. Furthermore, the MFF can be safely degraded without causing abnormal defects in vivo. The outstanding physicochemical properties of the MFF can potentially be a good alternative to existing sutures or staples and has potential for use in clinical practice. This article is protected by copyright. All rights reserved.

Keywords: biodegradable multifunctional; tissue; tissue adhesive; multifunctional film; hemostasis

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.