LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications.

Photo by schluditsch from unsplash

In recent years, the transdermal drug delivery based on microneedles (MNs) technology has received extensive attention, which offers a safer and painless alternative to hypodermic needle injection. They can pierce the… Click to show full abstract

In recent years, the transdermal drug delivery based on microneedles (MNs) technology has received extensive attention, which offers a safer and painless alternative to hypodermic needle injection. They can pierce the stratum corneum and deliver drugs to the epidermis and dermis-structures of skin, showing prominent properties such as minimally invasive, bypassing first-pass metabolism, and self-administered. A range of materials have been used to fabricate MNs, such as silicon, metal, glass, and polymers. Among them, polymer MNs have gained increasing attention from pharmaceutical and cosmetic companies as one of the promising drug delivery methods. Microneedle products have recently become available on the market, and some of them are under evaluation for efficacy and safety. This paper focuses on current state of polymer MNs in the drug transdermal delivery. The materials and methods for the fabrication of polymer MNs and their drug administration are described. The recent progresses of polymer MNs for treatment of cancer, vaccine delivery, blood glucose regulation, androgenetic alopecia, obesity, tissue healing, myocardial infarction and gout are reviewed. The challenges of MNs technology are summarized and the future development trend of MNs is also prospected. This article is protected by copyright. All rights reserved.

Keywords: drug transdermal; polymer mns; transdermal delivery; drug; delivery; recent advances

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.