LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrospun Azo-Cellulose Fabric: A Smart Polysaccharidic Photo-actuator.

A natural polysaccharide-based smart photo-actuator is fabricated via electrospinning of cellulose 4-phenyl azobenzoate (Azo-Cel) from its organic solution in a mixture of high-volatile acetone, a poor solvent of Azo-Cel, and… Click to show full abstract

A natural polysaccharide-based smart photo-actuator is fabricated via electrospinning of cellulose 4-phenyl azobenzoate (Azo-Cel) from its organic solution in a mixture of high-volatile acetone, a poor solvent of Azo-Cel, and low-volatile N,N-dimethylacetamide (DMAc), a good solvent of Azo-Cel. At an optimal polymer concentration (17 wt%) and solvent mixing ratio (acetone/DMAc = 3/2 (v/v)), stable electrified polymer jets are formed and continuous nanofibers and their nonwoven fabric can be drawn on a cylinder-shaped rotating drum electrode under a high electric field (25 kV). Scanning electron microscopic observation of the Azo-Cel fabric confirms that the fabric consists of uniaxially-aligned nanofibers with a mean diameter of 207 nm. The water contact angle of the Azo-Cel fabric reversibly decreases and increases in response to alternate irradiation with UV and visible light to induce geometric deformation of the azobenzene moiety between the trans and cis isomers, which lead to lower and higher surface free energies, respectively. In addition, self-standing Azo-Cel fabric exhibits a UV-driven photo-mechanical asymmetric bending deformation toward the light source. This article is protected by copyright. All rights reserved.

Keywords: photo actuator; azo cel; azo

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.