Many load-bearing tissues in nature obtain high toughness by fabricating anisotropic structures with spatially regulated composition and modulus at macroscale. This reality inspires a toughening strategy for hydrogel based on… Click to show full abstract
Many load-bearing tissues in nature obtain high toughness by fabricating anisotropic structures with spatially regulated composition and modulus at macroscale. This reality inspires a toughening strategy for hydrogel based on the controlling of modulus heterogeneity. Herein, a facile approach to realize light-regulated spatial modulus heterogeneity with large contrast in hydrogel is proposed. Ferric citric acid complex is used as a light-responsive ionic crosslinker, which can first stiffen an alginate/polyacrylamide hydrogel by coordinating with the alginate to form another network, then realize light-triggered softening through photoreduction of ferric ions. Based on this, a stripe-patterned hydrogel with alternating stiff and soft segments can be fabricated through photopatterning. The modulus contrast between the stiff and soft phases can be adjusted by control of several influence factors and the maximum modulus contrast reach up to 87 times. As a result, the toughness of the stripe-patterned hydrogel is enhanced by 3.5 times comparing to that hydrogel without pattern. This approach shows great potential in synthesis of smart hydrogel with light-programmable mechanical performances, and may be widely applicable for the hydrogels with functional groups that can coordinate with metal ions. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.