It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here we employ strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic… Click to show full abstract
It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here we employ strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic carbenes (NHCs) as Lewis bases (LBs), and boron-based compounds as Lewis acids (LAs) to construct LPs for polymerization of alkyl sorbates, including (E, E)-methyl sorbate (MS) and (E, E)-ethyl sorbate (ES). Systematic investigation reveal that the combinations of B(C6 F5 )3 with appropriate acidity and steric hindrance, and strong nucleophilic NHOs promote living and controlled polymerization of alkyl sorbates in 100% 1,4-addition manner, furnishing polymers with predicted molecular weight (Mw up to 56.6 kg/mol) and narrow molecular weight distribution (Đ as low as 1.12). Furthermore, topology analysis shows that NHC1/B(C6 F5 )3 LP produced PMS possessing cyclic structure. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.