Single-chain polymer nanoparticles (SCNPs) are soft matter constructed by intrachain crosslink, with promising prospects in detection and catalysis. Herein, the fluorescent core (SCNPs) with aggregation-induced emission (AIE) was prepared, applying… Click to show full abstract
Single-chain polymer nanoparticles (SCNPs) are soft matter constructed by intrachain crosslink, with promising prospects in detection and catalysis. Herein, the fluorescent core (SCNPs) with aggregation-induced emission (AIE) was prepared, applying for H2 O2 detection through intermolecular heavy-atom effect. In detail, the SCNPs precursors were synthesized by ring-opening copolymerization. Then the SCNPs were prepared by intramolecularly cross-linking via olefin metathesis. Imitating the structure of AIE dots, SCNPs were encapsulated by H2 O2 -responsive polymers. Probably due to the stable secondary structure of SCNPs, the obtained micelles show stable fluorescence performance. Furthermore, as the heavy-atom, tellurium was introduced into the carriers to construct the heavy-atom effect. In this micelle-based system, the SCNPs act as the fluorescent core, and the stimuli-responsive polymer acts as the carrier and the fluorescent switch. The hydrophilicity of the tellurium-containing segment is affected by the concentration of H2 O2 , resulting in a change in the distance from the SCNPs, which ultimately leads to a change in the fluorescence intensity. And tellurium is particularly sensitive to H2 O2 , which can detect low concentrations of H2 O2 . The SCNPs were merged with AIE materials, hoping to explore new probe design. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.