Polymer welding has received numerous scientific attention, however, the welding of polymer nanocomposites (PNCs) has not been studied yet. In this work, via coarse-grained molecular dynamics simulation, we focus our… Click to show full abstract
Polymer welding has received numerous scientific attention, however, the welding of polymer nanocomposites (PNCs) has not been studied yet. In this work, via coarse-grained molecular dynamics simulation, we focus our attention on investigating the welding interfacial structure, dynamics and strength by constructing the upper and lower layers of PNCs, by varying the polymer-nanoparticle (NP) interaction strength εNP-p . Remarkably, at low εNP-p , the NPs gradually migrate into the top and bottom surface layer perpendicular to the z direction during the adhesion process, while they are distributed in the middle region at high εNP-p . Meanwhile, the dimension of polymer chains is found to exhibit a remarkable anisotropy evidenced by the root-mean-square radius of gyration in the xy- (Rg,xy ) and z- (Rg,z ) component. The welding interdiffusion depth increases the fastest at low εNP-p, attributed to the high mobility of polymer chains and NPs. Lastly, although the mechanical properties of PNCs at high εNP-p is the strongest because of the presence of the NPs in the bulk region, the welding efficiency is the greatest at low εNP-p . Generally, our work could provide a fundamental understanding of the interfacial welding of PNCs, in hopes of guiding to design and fabricate excellent self-healable PNCs. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.