Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the… Click to show full abstract
Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the self-assembly process, we designed two building blocks based on 9-fluorenyl-methoxycarbonyl-phenylalanine (Fmoc-Phe) gelator which contain two extra methylene units in the backbone, generating Fmoc-γPhe and Fmoc-(3-hydroxy)-γPhe. Fmoc-γPhe spontaneously assembled in aqueous media forming a hydrogel with exceptional mechanical and thermal stability. Moreover, Fmoc-(3-hydroxy)-γPhe, with an extra backbone hydroxyl group decreasing its hydrophobicity while maintaining some molecular flexibility, self-assembled into a transient fibrillar hydrogel, that later formed microcrystalline aggregates through phase transition. Molecular dynamics simulations and single crystal X-ray analyses revealed the mechanism underlying the two residues' distinct self-assembly behaviors. Finally, we demonstrated Fmoc-γPhe and Fmoc-(3-OH)-γPhe co-assembly to form a supramolecular hydrogel with notable mechanical properties. We believe that the understanding of the structure-assembly relationship will enable the design of new functional amino acid-based hydrogels. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.