LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal-ligand Interactions and Oligo(p-Phenylene Vinylene) Derivatives Based Supramolecular Polymer Possessing Variable Fluorescence Colors.

Photo from wikipedia

Fluorescent supramolecular polymers combine the benefits of supramolecular polymers in terms of dynamic nature with the optoelectronic features of incorporated fluorophores. However, the majority of fluorescent supramolecular polymers can only… Click to show full abstract

Fluorescent supramolecular polymers combine the benefits of supramolecular polymers in terms of dynamic nature with the optoelectronic features of incorporated fluorophores. However, the majority of fluorescent supramolecular polymers can only exhibit a single fluorescent state, restricting their applications. Incorporating J-type dyes into supramolecular monomers is expected to impart supramolecular polymers with variable fluorescence colors, because the aggregation mode of J-type dyes is closely related to the formation of supramolecular polymers. Herein, we report a supramolecular polymer [M1·Zn(OTf)2 ]n , in which the monomer M1 contains a J-type dye, oligo(p-phenylene vinylene) (OPV) derivative, and two terpyridine ends. The M1 + Zn(OTf)2 solutions exhibit fluorescence color changes varying from cyan to yellow-green in the monomer concentration ranging from 0.04 to 1.00 mM. Moreover, based on the outputs from laser scanning confocal microscopy (LSCM), the fluorescence color transition during the formation of supramolecular polymers is intuitively proven. Additionally, considering the close relationship between the supramolecular polymer structure and the fluorescence color, the fluorescence color can be regulated by introducing tetraethylammonium hydroxide (TBAOH) that can bind with Zn2+ competitively to break up the structure of the supramolecular polymer. This article is protected by copyright. All rights reserved.

Keywords: fluorescence colors; supramolecular polymer; supramolecular polymers; variable fluorescence; fluorescence

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.