LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructure Control of an Antibiotic-based Polyion Complex Using a Series of Polycations with Different Side-chain Modification Rates.

Photo from wikipedia

Developing nanovehicles for delivering antibiotics is a promising approach to overcome the issue of antibiotic resistance. This study aims to utilize a polyion complex (PICs) system for developing novel nanovehicles… Click to show full abstract

Developing nanovehicles for delivering antibiotics is a promising approach to overcome the issue of antibiotic resistance. This study aims to utilize a polyion complex (PICs) system for developing novel nanovehicles for polymyxin-type antibiotics, which are known as last resort drugs. The formation of antibiotic-based PIC nanostructures was investigated using colistimethate sodium (CMS), an anionic cyclic short peptide, and a series of block catiomers bearing different amounts of guanidinium moieties on their side chains. In addition, only the modified catiomer, and not the unmodified catiomer, self-assembles with CMS, implying the importance of the guanidine moieties for enhancing the interaction between the catiomer and CMS via the formation of multivalent hydrogen bonding. Moreover, micellar and vesicular PIC nanostructures are selectively formed depending on the ratio of the guanidine residues. Size-exclusion chromatography revealed that the encapsulation efficiency of CMS is dependent on the guanidinium modification ratio. The antimicrobial activity of the PIC nanostructures is also confirmed, indicating that the complexation of CMS in the PICs and further release from the PICs successfully occurs. This article is protected by copyright. All rights reserved.

Keywords: series; antibiotic based; cms; polyion complex

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.