Hydrogels containing thermosensitive polymers such as poly(N-isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit… Click to show full abstract
Hydrogels containing thermosensitive polymers such as poly(N-isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+ ) that coordinate with functional groups along the P(AAc) chains, we here introduce a thermoresponsive hydrogel with significantly enhanced mechanical extensibility, strength, and toughness. Using both experimentation and constitutive modeling, we find that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+ concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+ bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self-healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) is reduced slightly with increased Fe3+ concentration, the temperature transition range is widened and shifted upwards towards that of human body temperature (between 30 and 40°C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.