LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ Spontaneous Fabrication of Tough and Stretchable Polyurethane-Polyethyleneimine Hydrogels Selectively Triggered by CO2.

Photo by richardrschunemann from unsplash

We develop CO2 -triggered in-situ hydrogels from waterborne poly(ε-caprolactone)-based polyurethane (PU) dispersion and aqueous polyethyleneimine (PEI) solution without any other chemicals and apparatus (e.g., UV light). In our approach, non-toxic… Click to show full abstract

We develop CO2 -triggered in-situ hydrogels from waterborne poly(ε-caprolactone)-based polyurethane (PU) dispersion and aqueous polyethyleneimine (PEI) solution without any other chemicals and apparatus (e.g., UV light). In our approach, non-toxic CO2 in air is used as a selective trigger for the hydrogel formation. CO2 adsorption onto PEI results in the formation of ammonium cations in PEI and the subsequent multiple ionic crosslinking between PU and PEI chains. Besides the amount of CO2 in air, the rate of hydrogel formation can be controlled by NaHCO3 in the PU-PEI mixture, which serves as a CO2 supplier. The PU hydrogels exhibit tough and stretchable properties with high tensile strength (2.05 MPa) and elongation at break (438.24%), as well as biocompatibility and biodegradability. In addition, the PU hydrogels exhibit high adhesion strength on skin and injectability due to the in-situ formation. We believe that these PU hydrogels have the ideal features for various future applications, such as tissue adhesion barriers, wound dressing, artificial skin, and injectable fillers. This article is protected by copyright. All rights reserved.

Keywords: polyurethane; polyethyleneimine; formation; situ spontaneous; tough stretchable; spontaneous fabrication

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.