LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Progress in Chemical Recycling of Carbon Fiber Reinforced Epoxy Composites.

Photo from wikipedia

Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked… Click to show full abstract

Carbon fiber reinforced polymer (CFRP) composites are indispensable in a variety of applications, because of their high specific strength. CFRPs are generally constructed by carbon fibers as reinforcements and crosslinked polymers as binders. Due to the irreversible nature of the crosslinked polymers, CFRPs are neither repairable nor recyclable. Once the material is damaged or out of service, landfill or incineration are the typical ways to deal with the waste. These methods are taking no advantages from the residue value of the waste and adds burdens to the environment. To extend the service life and reduce the waste and cost, it is desirable to develop effective recycling technology to reserve the residue value of carbon fiber and polymer matrix. In the past decade, chemical recycling by cleaving the covalent bonds in a solvent has been considered as an ideal path for the recycling of CFRP wastes and deserves more investigations and attentions, because it has the potential to recover both valuable CFs and polymer matrix. In this review, the discussion is focused on the recent progress on the chemical recycling of CFRP. The primary matrix resin of CFRP discussed in this review is epoxy resin which is the most widely used polymer matrix in industry. In addition, the challenges and outlook are also provided. This article is protected by copyright. All rights reserved.

Keywords: fiber reinforced; carbon; carbon fiber; progress chemical; chemical recycling

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.