LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photothermal Solid Slippery Surfaces with Rapid Self-Healing, Improved Anti/De-Icing and Excellent Stability.

Photo by amandavickcreative from unsplash

Icing phenomenon that occurs universally in nature and industry gets a great impact on human life. Over the past decades, extensive efforts have been made for a wide range of… Click to show full abstract

Icing phenomenon that occurs universally in nature and industry gets a great impact on human life. Over the past decades, extensive efforts have been made for a wide range of anti-icing/deicing surfaces, but the preparation of anti-icing/deicing interfaces that combine stability, rapid self-healing and excellent anti-icing/deicing performance remains a challenge. In this study, a photothermal solid slippery surface with excellent comprehensive performance is prepared by integrating cellulose acetate film, carbon nanotubes with paraffin wax (CCP). Apart from the excellent anti-icing and deicing properties at -17 ± 1.0 °C under 1 sun illumination, the surface can further achieve deicing at temperatures as low as -22 ± 1.0 °C under infrared light. The fabricated surface also exhibits great stability when placed in harsh conditions such as underwater or ultra-low temperature environments for over 30 days. Even when suffering from physical damage, the prepared surface can rapidly self-repair under 1 sun illumination or near-infrared (NIR) illumination within 16.0 ± 1.5 s. Due to the rapid and repeatable self-healing performance, the lubricating properties of the interface material do not deteriorate even after 50 repeated abrasing-repairing cycles. The photothermal solid slippery surface possesses wide-ranging applications and commercial value at high latitude and altitude regions. This article is protected by copyright. All rights reserved.

Keywords: self healing; solid slippery; photothermal solid; stability; anti icing

Journal Title: Macromolecular rapid communications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.