LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Maximization of the Proton Conductivity of Sulfonated Poly(Ether Ether Ketone) with Grafted Segments Containing Multiple, Flexible Propanesulfonic Acid Groups.

Photo from wikipedia

To enhance the proton conductivity of sulfonated poly(ether ether ketone) (SPEEK), proton-conducting groups are required to be covalently connected to SPEEK and form proton-conducting channels. Herein, SPEEK fully grafted with… Click to show full abstract

To enhance the proton conductivity of sulfonated poly(ether ether ketone) (SPEEK), proton-conducting groups are required to be covalently connected to SPEEK and form proton-conducting channels. Herein, SPEEK fully grafted with segments containing multiple, flexible propanesulfonic acid groups (MS-SPEEK-102) is successfully prepared. Compared with SPEEK, MS-SPEEK-102 exhibits a higher proton conductivity of 8.3 × 10-2 S cm-1 at 80 °C with 98% relative humidity, and consequently a greater power density of 0.530 W cm-2 at 60 °C. These can be ascribed to the increased number of sulfonic acid groups, and ample, uninterrupted proton-conducting channels constructed by the movement of the maximum content, flexible side-chain segments. This approach offers an idea for obtaining a proton exchange membrane with good proton conductivity based on SPEEK. This article is protected by copyright. All rights reserved.

Keywords: proton conductivity; conductivity sulfonated; acid groups; proton

Journal Title: Macromolecular rapid communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.