The aim of this paper is to deal with the existence of mild solutions and exact controllability for a class of fractional evolution inclusions with damping (FEID, for short) in… Click to show full abstract
The aim of this paper is to deal with the existence of mild solutions and exact controllability for a class of fractional evolution inclusions with damping (FEID, for short) in Banach spaces. Firstly, we provide the representation of mild solutions for FEID by applying the method of Laplace transform and the theory of (α,κ)-regularized families of operators. Next, we are concerned with the existence and exact controllability of FEID under some suitable sufficient conditions by using the method of measure of noncompactness and an appropraite fixed point theorem. Finally, an application to nonlinear partial differential equations with temporal fractional derivatives is presented to illustrate the effectiveness of our main results. Copyright © 2017 John Wiley & Sons, Ltd.
               
Click one of the above tabs to view related content.