LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical and asymptotic study of non-axisymmetric magnetohydrodynamic boundary layer stagnation-point flows

Photo by glenncarstenspeters from unsplash

Both numerical and asymptotic analyses are performed to study the similarity solutions of three-dimensional boundary-layer viscous stagnation point flow in the presence of a uniform magnetic field. The three-dimensional boundary-layer… Click to show full abstract

Both numerical and asymptotic analyses are performed to study the similarity solutions of three-dimensional boundary-layer viscous stagnation point flow in the presence of a uniform magnetic field. The three-dimensional boundary-layer is analyzed in a non-axisymmetric stagnation point flow, in which the flow is developed because of influence of both applied magnetic field and external mainstream flow. Two approaches for the governing equations are employed: the Keller-box numerical simulations solving full nonlinear coupled system and a corresponding linearized system that is obtained under a far-field behavior and in the limit of large shear-to-strain-rate parameter (λ). From these two approaches, the flow phenomena reveals a rich structure of new family of solutions for various values of the magnetic number and λ. The various results for the wall stresses and the displacement thicknesses are presented along with some velocity profiles in both directions. The analysis discovered that the flow separation occurs in the secondary flow direction in the absence of magnetic field, and the flow separation disappears when the applied magnetic field is increased. The flow field is divided into a near-field (due to viscous forces) and far-field (due to mainstream flows), and the velocity profiles form because of an interaction between two regions. The magnetic field plays an important role in reducing the thickness of the boundary-layer. A physical explanation for all observed phenomena is discussed. Copyright © 2017 John Wiley & Sons, Ltd.

Keywords: field; stagnation point; boundary layer; magnetic field

Journal Title: Mathematical Methods in The Applied Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.