LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations

Photo by suicide_chewbacca from unsplash

In this paper, we propose an efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations. Firstly, we carry out a truncation from a three‐dimensional… Click to show full abstract

In this paper, we propose an efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations. Firstly, we carry out a truncation from a three‐dimensional unbounded domain to a bounded spherical domain. By using spherical coordinate transformation and spherical harmonic expansion, we transform the original problem into a series of one‐dimensional eigenvalue problem that can be solved effectively. Secondly, we introduce a weighted Sobolev space to treat the singularity in the effective potential. Using the property of orthogonal polynomials in weighted Sobolev space, the error estimate for the approximate eigenvalues and corresponding eigenfunctions are proved. Error estimates show that our numerical method can achieve spectral accuracy for approximate eigenvalues and eigenfunctions. Finally, we give some numerical examples to demonstrate the efficiency of our algorithms and the correctness of the theoretical results.

Keywords: eigenvalue; method; spectral galerkin; efficient spectral; method based; galerkin method

Journal Title: Mathematical Methods in the Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.