LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Schrödinger‐Poisson system with Hardy‐Littlewood‐Sobolev critical exponent

Photo by mael_balland from unsplash

In this paper, we consider the following Schrödinger‐Poisson system: −Δu+λϕ|u|2α∗−2u=∫R3|u|2β∗|x−y|3−βdy|u|2β∗−2u,inR3,(−Δ)α2ϕ=Aα−1|u|2α∗,inR3, where parameters α,β∈(0,3),λ>0, Aα=Γ(3−α2)2απ32Γ(α2) , 2α∗=3+α , and 2β∗=3+β are the Hardy‐Littlewood‐Sobolev critical exponents. For α0, we prove the existence… Click to show full abstract

In this paper, we consider the following Schrödinger‐Poisson system: −Δu+λϕ|u|2α∗−2u=∫R3|u|2β∗|x−y|3−βdy|u|2β∗−2u,inR3,(−Δ)α2ϕ=Aα−1|u|2α∗,inR3, where parameters α,β∈(0,3),λ>0, Aα=Γ(3−α2)2απ32Γ(α2) , 2α∗=3+α , and 2β∗=3+β are the Hardy‐Littlewood‐Sobolev critical exponents. For α0, we prove the existence of nonnegative groundstate solution to above system. Moreover, applying Moser iteration scheme and Kelvin transformation, we show the behavior of nonnegative groundstate solution at infinity. For β0 small, we apply a perturbation method to study the existence of nonnegative solution. For β

Keywords: dinger poisson; system; hardy littlewood; littlewood sobolev; poisson system; schr dinger

Journal Title: Mathematical Methods in the Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.