In this paper, we consider the following Schrödinger‐Poisson system: −Δu+λϕ|u|2α∗−2u=∫R3|u|2β∗|x−y|3−βdy|u|2β∗−2u,inR3,(−Δ)α2ϕ=Aα−1|u|2α∗,inR3, where parameters α,β∈(0,3),λ>0, Aα=Γ(3−α2)2απ32Γ(α2) , 2α∗=3+α , and 2β∗=3+β are the Hardy‐Littlewood‐Sobolev critical exponents. For α0, we prove the existence… Click to show full abstract
In this paper, we consider the following Schrödinger‐Poisson system: −Δu+λϕ|u|2α∗−2u=∫R3|u|2β∗|x−y|3−βdy|u|2β∗−2u,inR3,(−Δ)α2ϕ=Aα−1|u|2α∗,inR3, where parameters α,β∈(0,3),λ>0, Aα=Γ(3−α2)2απ32Γ(α2) , 2α∗=3+α , and 2β∗=3+β are the Hardy‐Littlewood‐Sobolev critical exponents. For α0, we prove the existence of nonnegative groundstate solution to above system. Moreover, applying Moser iteration scheme and Kelvin transformation, we show the behavior of nonnegative groundstate solution at infinity. For β0 small, we apply a perturbation method to study the existence of nonnegative solution. For β
               
Click one of the above tabs to view related content.