This paper deals with the dissipativity and synchronization control of fractional‐order memristive neural networks (FOMNNs) with reaction‐diffusion terms. By means of fractional Halanay inequality, Wirtinger inequality, and Lyapunov functional, some… Click to show full abstract
This paper deals with the dissipativity and synchronization control of fractional‐order memristive neural networks (FOMNNs) with reaction‐diffusion terms. By means of fractional Halanay inequality, Wirtinger inequality, and Lyapunov functional, some sufficient conditions are provided to ensure global dissipativity and exponential synchronization of FOMNNs with reaction‐diffusion terms, respectively. The underlying model and the obtained results are more general since the reaction‐diffusion terms are first introduced into FOMNNs. The given conditions are easy to be checked, and the correctness of the obtained results is confirmed by a living example.
               
Click one of the above tabs to view related content.