LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical solutions of random mean square Fisher‐KPP models with advection

Photo by efekurnaz from unsplash

This paper deals with the construction of numerical stable solutions of random mean square Fisher‐Kolmogorov‐Petrosky‐Piskunov (Fisher‐KPP) models with advection. The construction of the numerical scheme is performed in two stages.… Click to show full abstract

This paper deals with the construction of numerical stable solutions of random mean square Fisher‐Kolmogorov‐Petrosky‐Piskunov (Fisher‐KPP) models with advection. The construction of the numerical scheme is performed in two stages. Firstly, a semidiscretization technique transforms the original continuous problem into a nonlinear inhomogeneous system of random differential equations. Then, by extending to the random framework, the ideas of the exponential time differencing method, a full vector discretization of the problem addresses to a random vector difference scheme. A sample approach of the random vector difference scheme, the use of properties of Metzler matrices and the logarithmic norm allow the proof of stability of the numerical solutions in the mean square sense. In spite of the computational complexity, the results are illustrated by comparing the results with a test problem where the exact solution is known.

Keywords: kpp models; fisher kpp; random mean; mean square; square fisher; solutions random

Journal Title: Mathematical Methods in the Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.