A new combination of Lie symmetry and Singular Manifold methods has been employed to study (3 + 1)‐dimensional generalized Kadomtsev‐Petviashvili (KP). Infinite‐dimensional space of Lie vectors has been established. Single… Click to show full abstract
A new combination of Lie symmetry and Singular Manifold methods has been employed to study (3 + 1)‐dimensional generalized Kadomtsev‐Petviashvili (KP). Infinite‐dimensional space of Lie vectors has been established. Single and dual linear combinations of Lie vectors are used after appropriate calculations of the arbitrary functions to reduce the equation to an ordinary differential equation (ODE). The resulting ODE is then analytically solved through the singular manifold method which resulted in a Bäcklund truncated series with seminal analysis leading to a Schwarzian differential equation in the Eigenfunction φ (η). Solving this differential equation leads to new analytical solutions.
               
Click one of the above tabs to view related content.