In this paper, we study the following Schrödinger‐Poisson equations: −ε2Δu+V(x)u+K(x)ϕu=|u|p−2u,x∈R3,−ε2Δϕ=K(x)u2,x∈R3, where p∈(4,6) , ε>0 is a parameter and V and K satisfy the critical frequency conditions. By using variational methods… Click to show full abstract
In this paper, we study the following Schrödinger‐Poisson equations: −ε2Δu+V(x)u+K(x)ϕu=|u|p−2u,x∈R3,−ε2Δϕ=K(x)u2,x∈R3, where p∈(4,6) , ε>0 is a parameter and V and K satisfy the critical frequency conditions. By using variational methods and penalization arguments, we show the existence of multibump solutions for the above system. Furthermore, the heights of these bumps are different order.
               
Click one of the above tabs to view related content.