LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New blow‐up conditions to p‐Laplace type nonlinear parabolic equations under nonlinear boundary conditions

Photo by stayandroam from unsplash

In this paper, we study blow‐up phenomena of the following p‐Laplace type nonlinear parabolic equations ut=∇·ρ(|∇u|p)|∇u|p−2∇u+f(x,t,u),inΩ×(0,t∗), under nonlinear mixed boundary conditions ρ(|∇u|p)|∇u|p−2∂u∂n+θ(z)ρ(|u|p)|u|p−2u=h(z,t,u),onΓ1×(0,t∗), and u=0 on Γ2 × (0, t∗) such that Γ1∪Γ2=∂Ω ,… Click to show full abstract

In this paper, we study blow‐up phenomena of the following p‐Laplace type nonlinear parabolic equations ut=∇·ρ(|∇u|p)|∇u|p−2∇u+f(x,t,u),inΩ×(0,t∗), under nonlinear mixed boundary conditions ρ(|∇u|p)|∇u|p−2∂u∂n+θ(z)ρ(|u|p)|u|p−2u=h(z,t,u),onΓ1×(0,t∗), and u=0 on Γ2 × (0, t∗) such that Γ1∪Γ2=∂Ω , where f and h are real‐valued C1‐functions. To discuss blow‐up solutions, we introduce new conditions: For each x ∈ Ω, z ∈ ∂Ω, t > 0, u > 0, and v > 0, (Dp1):αF(x,t,u)≤uf(x,t,u)+β1up+γ1,αH(z,t,u)≤uh(z,t,u)+β2up+γ2,(Dp2):δvρ(v)≤P(v), for some constants α, β1, β2, γ1, γ2, and δ satisfying α>2,δ>0,β1+λR+1λSβ2≤αδp−1ρmλR,and0≤β2≤αδp−1ρmλS, where ρm:=infw>0ρ(w) , P(v)=∫0vρ(w)dw , F(x,t,u)=∫0uf(x,t,w)dw , and H(x,t,u)=∫0uh(x,t,w)dw . Here, λR is the first Robin eigenvalue and λS is the first Steklov eigenvalue for the p‐Laplace operator, respectively.

Keywords: parabolic equations; boundary conditions; type nonlinear; laplace type; equations nonlinear; nonlinear parabolic

Journal Title: Mathematical Methods in the Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.