The pivotal aim of the present study is to employ fractional natural decomposition method (FNDM) to find the solution for a nonlinear system arising in thermoelasticity. The considered coupled system… Click to show full abstract
The pivotal aim of the present study is to employ fractional natural decomposition method (FNDM) to find the solution for a nonlinear system arising in thermoelasticity. The considered coupled system is generalised many physical phenomena associated with the material with elastic characters and its temperature and also which is called a Cauchy problem. We consider the coupled system by incorporating the Caputo fractional operator and investigate three distinct cases for different initial values to illustrate the applicability and efficiency of the FNDM. With respect to fractional order, we capture the behaviour of the achieved solution cited in three different cases and exemplified with the aid of 2D and 3D plots for the particular value of the parameters in the model. Moreover, some interesting behaviours of the projected model are confirms the prominence of the employed fractional operator while analysing the nonlinear coupled equations exemplifying real‐world problems and also shows the capability of the considered algorithm.
               
Click one of the above tabs to view related content.