LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D‐printed deformable pelvis phantom

Photo from wikipedia

Purpose In this study, we developed a 3D‐printed deformable pelvis phantom for evaluating spatial DIR accuracy. We then evaluated the spatial DIR accuracies of various DIR settings for cervical cancer.… Click to show full abstract

Purpose In this study, we developed a 3D‐printed deformable pelvis phantom for evaluating spatial DIR accuracy. We then evaluated the spatial DIR accuracies of various DIR settings for cervical cancer. Methods A deformable female pelvis phantom was created based on patient CT data using 3D printing. To create the deformable uterus phantom, we first 3D printed both a model of uterus and a model of the internal cavities of the vagina and uterus. We then made a mold using the 3D printed uterus phantom. Finally, urethane was poured into the mold with the model of the internal cavities in place, creating the deformable uterus phantom with a cavity into which an applicator could be inserted. To create the deformable bladder phantom, we first 3D printed models of the bladder and of the same bladder scaled down by 2 mm. We then made a mold using the larger bladder model. Finally, silicone was poured into the mold with the smaller bladder model in place to create the deformable bladder phantom with a wall thickness of 2 mm. To emulate the anatomical bladder, water was poured into the created bladder. We acquired phantom image without applicator for EBRT. Then, we inserted the applicator into the phantom to simulate BT. In this situation, we scanned the phantom again to obtain the phantom image for BT. We performed DIR using the two phantom images in two cases: Case A, with full bladder (170 ml) in both EBRT and BT images; and Case B with full bladder in the BT image and half‐full bladder (100 ml) in the EBRT image. DIR was evaluated using Dice similarity coefficients (DSCs) and 31 landmarks for the uterus and 25 landmarks for the bladder. A hybrid intensity and structure DIR algorithm implemented in RayStation with four DIR settings was evaluated. Results On visual inspection, reasonable agreement in shape of the uterus between the phantom and patient CT images was observed for both EBRT and BT, although some regional disagreements in shape of the bladder and rectum were apparent. The created phantom could reproduce the actual patient's uterus deformation by the applicator. For both Case A and B, large variation was seen in landmark error among the four DIR parameters. In addition, although DSCs were comparable, moderate differences in landmark error existed between the two different DIR parameters selected from the four DIR parameters (i.e., DSC = 0.96, landmark error = 13.2 ± 5.7 mm vs. DSC = 0.97, landmark error = 9.7 ± 4.0 mm). This result suggests that landmark error evaluation might thus be more effective than DSC for evaluating DIR accuracy. Conclusions Our developed phantom enabled the evaluation of spatial DIR accuracy for the female pelvic region for the first time. Although the DSCs are high, the spatial errors can still be significant and our developed phantom facilitates their quantification. Our results showed that optimization is needed to identify suitable DIR settings. For determining suitable DIR settings, our method of evaluating spatial DIR accuracy using the 3D‐printed phantom may prove helpful.

Keywords: image; phantom; bladder; dir; pelvis phantom; landmark error

Journal Title: Medical Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.