LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interpolated CT for attenuation correction on respiratory gating cardiac SPECT/CT - A simulation study.

Photo by arunwithideas from unsplash

PURPOSE Respiratory gated four-dimensional (4D) single photon emission computed tomography (SPECT) with phase-matched CT reduces respiratory blurring and attenuation correction (AC) artifacts in cardiac SPECT. This study aims to develop… Click to show full abstract

PURPOSE Respiratory gated four-dimensional (4D) single photon emission computed tomography (SPECT) with phase-matched CT reduces respiratory blurring and attenuation correction (AC) artifacts in cardiac SPECT. This study aims to develop and investigate the effectiveness of an interpolated CT (ICT) method for improved cardiac SPECT AC using simulations. METHODS We used the 4D XCAT phantom to simulate a population of ten patients varied in gender, anatomy, 99m Tc-sestamibi distribution, respiratory patterns, and disease states. Simulated 120 SPECT projection data were rebinned into six equal count gates. Activity and attenuation maps in each gate were averaged as gated SPECT and CT (GCT). Three helical CTs were simulated at end-inspiration (HCT-IN), end-expiration (HCT-EX), and mid-respiration (HCT-MID). The ICTs were obtained from HCT-EX and HCT-IN using the motion vector field generated between them from affine plus b-spline registration. Projections were reconstructed by OS-EM method, using GCT, ICT, and three HCTs for AC. Reconstructed images of each gate were registered to end-expiration and averaged to generate the polar plots. Relative difference for each segment and relative defect size were computed using images of GCT AC as reference. RESULTS The average of maximum relative difference through ten phantoms was 7.93 ± 4.71%, 2.50 ± 0.98%, 3.58 ± 0.74%, and 2.14 ± 0.56% for noisy HCT-IN, HCT-MID, HCT-EX, and ICT AC data, respectively. The ICT showed closest defect size to GCT while the differences from HCTs can be over 40%. CONCLUSION We conclude that the performance of ICT is similar to GCT. It improves the image quality and quantitative accuracy for respiratory-gated cardiac SPECT as compared to conventional HCT, while it can potentially further reduce the radiation dose of GCT.

Keywords: attenuation correction; spect; hct; respiratory; cardiac spect

Journal Title: Medical physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.