LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards Predicting the Evolution of Lung Tumors During Radiotherapy Observed on a Longitudinal MR Imaging Study Via a Deep Learning Algorithm.

Photo from wikipedia

PURPOSE To predict the spatial and temporal trajectories of lung tumor during radiotherapy monitored under a longitudinal MRI study via a deep learning algorithm for facilitating adaptive radiotherapy (ART). METHODS… Click to show full abstract

PURPOSE To predict the spatial and temporal trajectories of lung tumor during radiotherapy monitored under a longitudinal MRI study via a deep learning algorithm for facilitating adaptive radiotherapy (ART). METHODS We monitored ten lung cancer patients by acquiring weekly MRI-T2w scans over a course of radiotherapy. Under an ART workflow, we developed a predictive neural network (P-net) to predict the spatial distributions of tumors in the coming weeks utilizing images acquired earlier in the course. The 3-step P-net consisted of a convolutional neural network to extract relevant features of the tumor and its environment, followed by a recurrence neural network constructed with gated recurrent units to analyze trajectories of tumor evolution in response to radiotherapy, and finally an attention model to weight the importance of weekly observations and produce the predictions. The performance of P-net was measured with Dice and root mean square surface distance (RMSSD) between the algorithm-predicted and experts-contoured tumors under a leave-one-out scheme. RESULTS Tumor shrinkage was 60% ± 27% (mean ± standard deviation) by the end of radiotherapy across nine patients. Using images from the first three weeks, P-net predicted tumors on future weeks (4, 5, 6) with a Dice and RMSSD of (0.78±0.22, 0.69±0.24, 0.69±0.26), and (2.1±1.1mm, 2.3± 0.8mm, 2.6± 1.4mm), respectively. CONCLUSION The proposed deep learning algorithm can capture and predict spatial and temporal patterns of tumor regression in a longitudinal imaging study. It closely follows the clinical workflow, and could facilitate the decision making of ART. A prospective study including more patients is warranted. This article is protected by copyright. All rights reserved.

Keywords: deep learning; study; study via; via deep; learning algorithm; longitudinal imaging

Journal Title: Medical physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.