LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PET/MRI attenuation estimation in the lung: A review of past, present, and potential techniques

Photo from wikipedia

Positron emission tomography/magnetic resonance imaging (PET/MRI) potentially offers several advantages over positron emission tomography/computed tomography (PET/CT), for example, no CT radiation dose and soft tissue images from MR acquired at… Click to show full abstract

Positron emission tomography/magnetic resonance imaging (PET/MRI) potentially offers several advantages over positron emission tomography/computed tomography (PET/CT), for example, no CT radiation dose and soft tissue images from MR acquired at the same time as the PET. However, obtaining accurate linear attenuation correction (LAC) factors for the lung remains difficult in PET/MRI. LACs depend on electron density and in the lung, these vary significantly both within an individual and from person to person. Current commercial practice is to use a single‐valued population‐based lung LAC, and better estimation is needed to improve quantification. Given the under‐appreciation of lung attenuation estimation as an issue, the inaccuracy of PET quantification due to the use of single‐valued lung LACs, the unique challenges of lung estimation, and the emerging status of PET/MRI scanners in lung disease, a review is timely. This paper highlights past and present methods, categorizing them into segmentation, atlas/mapping, and emission‐based schemes. Potential strategies for future developments are also presented.

Keywords: past present; pet mri; attenuation estimation; lung

Journal Title: Medical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.