LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of Voxel S-Value Methods for Personalized Voxel-based Dosimetry of 177 Lu-DOTATATE.

Photo by arthurlfranklin from unsplash

PURPOSE Voxel-based dosimetry is potentially accurate than organ-based dosimetry because it considers the anatomical variations in each individual and the heterogeneous radioactivity distribution in each organ. Here, voxel-based dosimetry for… Click to show full abstract

PURPOSE Voxel-based dosimetry is potentially accurate than organ-based dosimetry because it considers the anatomical variations in each individual and the heterogeneous radioactivity distribution in each organ. Here, voxel-based dosimetry for 177 Lu-DOTATATE therapy was performed using single and multiple voxel S-value (VSV) methods and compared with Monte Carlo simulations. To verify these methods, we adopted sequential 177 Lu-DOTATATE SPECT/CT dataset acquired from Sunway Medical Centre using the major vendor's SPECT/CT scanner (Siemens) METHODS: The administered activity of 177 Lu-DOTATATE was 7.99 ± 0.36 GBq. SPECT/CT images were acquired 0.5, 4, 24, and 48 h after injection in Sunway Medical Centre. For the multiple VSV method VSV kernels of 177 Lu in media with various densities were generated by GATE simulation first. The second step involved the convolution of the time-integrated activity map with each kernel to produce medium-specific dose maps. Third, each medium-specific dose map was masked using binary medium masks, which were generated from CT-based density maps. Finally, all masked dose maps were summed to generate the final dose map. VSV methods with four different VSV sets (1, 4, 10, and 20 VSVs) were compared. Voxel-wise density correction for the single VSV method was also performed. The absorbed doses in the kidneys, bone marrow, and tumors were analyzed, and the relative errors between the VSV and Monte Carlo simulation approaches were estimated. Organ-based dosimetry using OLINDA/EXM was also compared RESULTS: The accuracy of the multiple VSV approach increased with the number of dose kernels. The average dose estimation errors of a single VSV with density correction and 20 VSVs were less than 6% in most cases, although organ-based dosimetry using OLINDA/EXM yielded an error of up to 123%. The advantages of the single VSV method with density correction and the 20 VSVs over organ-based dosimetry were most evident in bone marrow and bone-metastatic tumors with heterogeneous medium properties. CONCLUSION The single VSV method with density correction and multiple VSV method with 20 dose kernels enabled fast and accurate radiation dose estimation. Accordingly, voxel-based dosimetry methods can be useful for managing administration activity and for investigating tumor dose responses to further increase the therapeutic efficacy of 177 Lu-DOTATATE. This article is protected by copyright. All rights reserved.

Keywords: vsv; based dosimetry; 177 dotatate; dosimetry; voxel based

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.